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Abstract— We analyse the control output feedback sen-
sitivity function which results from imposing the minimal
Signal-to-Noise Ratio requirement needed for stabilisability.
The Signal to Noise Ratio constraint used here includes the
effect of a band limited, additive coloured Gaussian noise
communication link and a (non) minimum phase unstable
continuous (discrete) linear time invariant (LTI) plant with
time delay.

Target performance is introduced in a form that directly
implies an additional term in the required SNR compared to
the case of stabilisability only.

In a first approach performance is sought as output
disturbance rejection giving guaranteed reference tracking
at zero frequency (integral action) and compensation for
perturbations over a range of frequencies. It is noted that
the resulting additional cost can be made vanishingly small
by making the closed loop arbitrarily slow.

In a second approach we define frequency bounds for the
magnitude of the output sensitivity function. These bounds
will guarantee low error reference tracking and rejection of
disturbances over a non trivial range of frequencies. Based on
this, a lower bound for the required extra SNR that satisfies
the mentioned sensitivity magnitude bounds is proposed and
its tightness discussed.

I. INTRODUCTION.

Control over networks has become an area of growing

interest in recent years with works such as [1], [2], [3], [4],

[5] and [6]. See also [7] and the references therein.

Generally, the communication link involves some pre-

and post-processing of the signals that are sent through

a communication channel, for example, filtering, analog-

to-digital (A-D) conversion, coding, modulation, decoding,

demodulation and digital-to-analog (D-A) conversion.

Of the two possible configurations for the location of the

idealised communication channel (measurement path and

control path), we consider the case of a communication

channel over the control link. Such a setting is common in

practice and arises, for example, when actuators are far from

the controller and have to communicate through a (perhaps

partially wireless) communication network.
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Nonetheless, in a Single-input Single-output (SISO) lin-

ear time invariant (LTI) setting, both forms are equivalent,

and it is a simple matter to restate the results for the case

of where measurement is performed over a communication

channel.

Stabilisability of the resulting feedback loop has been

studied in relation to quantisation, bit rate limitations,

bandwidth constraints and time delays over the commu-

nication channel. A line of investigation using topological

and entropy concepts is pursued in [8], [9] and [10]. More

recently in [11] interesting results have been presented on

generalisations of Bode’s Integral Theorem, including limits

implied by the communication channel capacity.

Stabilisability in terms of Signal to Noise ratio has been

primarily studied in [12], [13], [14], [15], and [16]. The

analysis there includes the effects of plant non-minimum

phase zeros and time delays, both in the continuous and

discrete time setting, in an output feedback and state-space

feedback scheme, whilst the communication link has been

studied for the case of infinite bandwidth, band limited,

white or coloured additive Gaussian noise.

The present article takes inspiration from results in

[16], which model the communication channel through the

idealisation of a band limited, additive coloured Gaussian

noise (ACGN) channel, imposing a power constraint on

the channel input signal. Thus the stabilisability problem

is expressed through a bound on the signal to noise ratio

(SNR) defined by the imposed power constraint and the

white noise power spectral density.

In the present paper, as in [16] before, we neglect all pre-

and post- signal processing involved in the communication

link, which is then reduced to the communication channel

itself. The bandwidth constraint on the communication

channel may be imposed, for example, to avoid interference

between different channels in a communication system,

whilst the coloured noise may be imposed as a more realistic

feature for a communication channel than the white noise

case studied in [12], and [13].

In control theory important feedback loop properties are

defined by the sensitivity function and/or the complemen-

tary sensitivity function, see for example [17]. A common

design requirement, that can be quantified through the

sensitivity function, is guaranteed reference tracking and

simultaneous compensation for possible modelling errors

(or disturbances) at zero frequency. In order to achieve

the above design requirement the presence of an integrator

in the controller is required. In what follows the design

requirement at zero frequency and the presence of an inte-
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grator in the controller will be considered interchangeable

concepts, which we will call in short integral action.

The main result of this work is an expression for the

sensitivity function of an output feedback loop when the

minimal SNR required to guarantee stabilisability is im-

posed together with a band limited ACGN communication

channel both in the continuous and discrete framework.

Also a lower bound for the extra SNR requirement for al-

most achieving disturbance rejection (i.e., |T (jω)| ≈ 1 and

T the complementary sensitivity) over a given bandwidth

defined by the user is presented.

The paper is organised as follows: in Section 2 we

address the resulting sensitivity function for the continuous

(discrete) time output feedback stabilisability problem over

a power constrained, bandwidth limited ACGN channel.

Section 3 introduces a lower bound for the extra SNR

needed to guarantee stabilisability and disturbance rejection

over a given range of frequencies. Finally Section 4 presents

concluding remarks. Due to the page constraint most proofs

are referred to the Appendix of [18] (under review) and can

be provided upon request to the corresponding author.

II. SENSITIVITY FOR THE MINIMAL SNR WITH

GUARANTEED STABILISABILITY.

Consider the case of a plant with pure time delay τ , m
different unstable poles and q different NMP zeros.

G = Goe
−sτ =

BzGNo

BpMo

e−sτ , (1)

where No and Mo are stable proper, minimum phase

transfer functions and

Bp =

m
∏

i=1

s − pi

s + p̄i

, BzG =

q
∏

j=1

s − zj

s + z̄j

. (2)

Also consider the bandwidth limited ACGN channel, de-

picted in Figure 1, where filter F (s) is stable, biproper and

models the bandwidth limitation. Filter H(s) is also stable,

biproper and colours the zero-mean white Gaussian noise

w(t). In particular we assume that there are f NMP zeros

located at filter F (s), that is F = BzF F̃ . In general if a

precise distinction about the origin of any given NMP zero

is not required we will use the notation Bz = BzG · BzF .

The main result from [16] is that the SNR required for

stabilisability satisfies

P

Φ
>

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

e(pi+p̄j)τ , (3)

where each ri, with i = 1, · · · ,m is given by

ri = 2Re {pi}B−1
z (pi) F̃−1 (pi) H (pi)

m
∏

k=1
k 6=i

pi + p̄k

pi − pk

,

(4)

where P is the channel input power constraint and Φ is the

noise w(t) power spectral density, as in Figure 1. Achieving

the above result however implies a specific selection for

y(t)

b

i-- --
?

?

-
−

G(s)

Channel

F (s)

H(s)

++
C(s)

r(t)s(t)

w(t)

b

Fig. 1. Stabilisation via output feedback over a band limited ACGN
channel.

the controller and through that, a specific structure for the

sensitivity and complementary sensitivity of the output feed-

back loop. The expression for the sensitivity is explicitly

given in the following theorem, whilst the expression for

the complementary sensitivity can be deduced from it.

Theorem 1: Consider a continuous plant with m different

unstable poles (pi, i = 1, · · · ,m), q + f different NMP

zeros (zj , j = 1, · · · , q + f ) (either from the plant or

the channel) and time delay τ 6= 0. The stabilising proper

controller 1 which achieves the minimal SNR required for

stabilisability of the loop, in the presence of a band limited

ACGN channel, will produce the following sensitivity for

the output feedback closed loop

Ŝ(s) = 1 − e−sτBz(s)F̃ (s)H−1(s)·

·

m
∑

i=1









rie
piτ

s + p̄i

m
∏

j=1
j 6=i

s − pj

s + p̄j









, (5)

where Bp and Bz denote the Blaschke products for the

unstable poles (from the plant) and NMP zeros (from the

plant and/or channel model) defined as in (2).

Proof: see [18, § A.3.1].

The result above let us perceive more clearly what kind

of behaviour we should expect from such closed feedback

loop. For that take into consideration the following example.

Example 1: Take a plant with one real unstable pole

p, one NMP zero z , no time delay (i.e. τ = 0) and a

minimum phase bandwidth limited ACGN channel. The re-

sulting complementary sensitivity, obtained from achieving

the minimal possible SNR for stabilisability is given by

T (s) =
r

s + p

(

s − z

s + z

)

F̃ (s)H−1(s), (6)

where r is given by

r = 2Re {p}B−1
z (p) F̃−1 (p)H (p) . (7)

From (6) is possible to see clearly that the bandwidth of

the obtained complementary sensitivity will be dictated by

1The expression for the infimal continuous-time sensitivity function,
when the controller that achieves the SNR lower bound is improper, can
be found in [18, p.63]. Here the infimal result is omitted in order to avoid
details that would unnecessarily clutter the present discussion.
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F or H−1 only if their bandwidth is less than p, otherwise

it will be constrained by the unstable pole to have a cut off

frequency of p [rad/s].
Next, the counterpart of Theorem 1 for the discrete output

feedback loop case is given, (see also [16]).

Theorem 2: Assume a discrete plant with m different

unstable poles (ρi, i = 1, · · · ,m), q + f different NMP

zeros (ζj , j = 1, · · · q + f ), either from the plant or the

channel model, and possible relative degree, r, greater than

one. The stabilising controller which achieves the minimal

SNR required for stabilisability of the loop, in the presence

of a power constrained bandwidth limited ACGN channel,

will impose the following sensitivity for the output feedback

closed loop

Ŝ(z) = 1 + Bζ(z)Bρ(z)F̃ (z)H−1(z)

r−1
∑

k=1

µkz−k

− Bζ(z)F̃ (z)H−1(z)

m
∑

k=1









rk

1 − zρ̄k

m
∏

j=1
j 6=k

z − ρj

1 − zρ̄j









,

(8)

where Bρ and Bζ denote the discrete time Blaschke prod-

ucts for the unstable poles and NMP zeros

Bρ =

m
∏

i=1

z − ρi

1 − zρ̄i

, Bζ =

q+f
∏

j=1

z − ζj

1 − zζ̄j

, (9)

and

ri =

(1 − |ρi|
2
)









m
∏

j=1
j 6=i

1 − ρiρ̄j

ρi − ρj









B−1
ζ (ρi) F̃−1 (ρi)H (ρi) ,

µk =

m
∑

i=1

riρ
k−1
i .

(10)
Proof: see [18, § A.4.1].

Consider now the case where the required control design

objectives have been successfully combined into a required

target sensitivity for the continuous time output feedback

loop. In this case, assuming that the target sensitivity differs

from the one in (5), there will be an additional demand

on the SNR to achieve the extra performance requirement.

Note that different Sper must satisfy the same interpolation

constraints as Ŝ (Sper (pi) = 0 ∀i = 1, · · · ,m and

Sper (zj) = 1 ∀j = 1, · · · , q).

The next theorem specifies the additional SNR created

by the presence of Sper in the continuous case.

Theorem 3: Consider a continuous time plant with m
different unstable poles, q different NMP zeros, time delay

τ and f channel NMP zeros. Consider also a given target

closed loop sensitivity, Sper. The SNR required to achieve

simultaneously stabilisability and the required performance

can be quantified as

P

Φ
>

m
∑

i=1

m
∑

j=1

rir̄j

pi + p̄j

e(pi+p̄j)τ +
∥

∥

∥

(

Sper − Ŝ
)

F̃−1H
∥

∥

∥

2

H2

,

(11)

where P is the channel input power constraint and

Φ is the noise w(t) power spectral density. In (11)

which
∑m

i=1

∑m
j=1

rir̄j

pi+p̄j
e(pi+p̄j)τ takes into account

the stabilisability requirement, whilst the expression
∥

∥

∥

(

Sper − Ŝ
)

F̃−1H
∥

∥

∥

2

H2

weights the performance require-

ment in terms of SNR.

Proof: see [18, § A.3.2].
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Fig. 2. SNR requirement as function of two PID controller parameters.

To better appreciate the relevance of the result expressed

by Theorem 3 we start by the following example involving

PID tuning.

Example 2: Consider the case of an AWGN communi-

cation channel with infinite bandwidth, and as an example

a continuous time plant model given by

G(s) =
1

s − 1
. (12)

Theorem 1 defines the sensitivity function related to the

minimal SNR required for stabilisability of the closed loop

to be

Ŝ(s) =
s − 1

s + 1
. (13)

The complementary sensitivity is readily obtained as 1 −
Ŝ(s)

T̂ (s) =
2

s + 1
. (14)

It is not hard to find out that the controller that achieves the

above complementary sensitivity is a proportional controller

set to 2. Consider now that the controller is changed to a

PID parallel structure [19, p. 160]

CPID = 2 +
Ki

s
+

Kds

0.1Kds + 1
, (15)
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with Ki ∈ R
+ and Kd ∈ R

+, such as the controller

is stabilising. The choice of a PID controller will not

be optimal implying that some extra SNR is required, as

predicted by Theorem 3. Figure 2 reports the extra SNR as

a function of the parameters Ki and Kd.
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Fig. 3. Settling time, solid line, and SNR, dashed line, as functions of
parameter a.

The example just presented reports the effect of a non

optimal choice for the controller (specifically the case

of a PID controller), but it does not explicitly address

performance requirements. The following example touches

the issue of performance directly.

Example 3: Consider the same plant and channel selec-

tion as in Example 2. The step response of the complemen-

tary sensitivity in (14) produces a settling value of 2 with a

settling time of approximately 4.4 time units (here defined

as the time in which the response of the system reaches 99%
of the settling value). Define the error in settling value as the

difference between the settling value of the output and the

input. For the case of the complementary sensitivity in (14),

since the input is a step of magnitude one and its settling

value is 2, the error in settling value amounts precisely to

1 and quantifies the reference tracking error at steady state.

Consider now that the user is not satisfied with such

meager bandwidth for the closed loop and decides that it

requires the following complementary sensitivity to be in

place

Tper(s) =
1 + a

s + a
, (16)

with a positive real number and a ≥ 1. Notice that a can

not be chosen to be less than 1 due to the optimal nature

of the stabilising solution obtained by the minimal energy

controller and its property of mirroring the unstable poles

of the plant.

Theorem 3 tells us that this choice will force an increase

in the lower bound for the SNR necessary to ensure stabil-

isability.

The unit step response for the complementary sensitivity

defined in (16) has been tested for values of a in a range

between 1 and 25. Results are reported in Figure 3 and 4.

It is possible to observe from Figure 3 how the closed loop

settling time is reduced if the SNR is increased above the

value needed only for stabilisability. Similarly in Figure 4

we can see that as the allowed SNR increases, the error in

settling value for this example approaches 0, which implies

that disturbance rejection and successful reference tracking

are taking place.

To better quantify these ideas take the case a = 5 in

which the SNR increases by the amount

‖Tper − T̂‖2
H2

=

∥

∥

∥

∥

4(s − 1)

(s + 1)(s + 5)

∥

∥

∥

∥

2

H2

= 1.6 . (17)

The settling time in this case, with the same 1% tolerance,

is approximately 0.94 time units. Note that the base SNR,

required for stabilisation, is 2. So actually, if we can allow

80% more SNR, we can speed up the response by almost 5

times. The error in settling value for the same selection of a
amounts to 0.2. The result in (17) quantifies how much the
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Fig. 4. Error in settling value as a function of parameter a.

SNR required for stabilisability will have to increase due to

the target performance requirement.

III. SENSITIVITY REDUCTION OVER A GIVEN

BANDWIDTH.

A common desirable requirement when designing a con-

trol feedback loop is to ensure the presence of integral

action in the loop, more precisely in the controller. This

can be perceived as a performance requirement, but integral

action by itself does not directly imply an additional SNR

as the following example shows.

Example 4: Consider the case of an AWGN commu-

nication channel with infinite bandwidth. Also take the

following transfer function as the plant model

G(s) =
1

s − 1
. (18)
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It can be seen that the Youla parameter Q(s) that guaran-

tees integral action and satisfies the interpolation condition

dictated by the unstable pole of the plant is

Q(s) = (a + 2)
s + 1

s + a
, (19)

with a ∈ R
+. The complete result accordingly to Theorem

3 is given by
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Fig. 5. Complementary sensitivities for a = 1, solid line, a = 0.1,
dash-dotted line, a = 0.01, dashed line and a = 0, dotted line.

P

Φ
> 2 +

(a

2

)2
∥

∥

∥

∥

2

s + a

∥

∥

∥

∥

2

H2

= 2 +
a

2
. (20)

If we consider a → 0 we will regain the minimum result for

assured stabilisability, but we will lose the disturbance rejec-

tion characteristic. This is more clearly appreciated through

the complementary sensitivity expression as a function of a

T (s) =
(a + 2)s + a

(s + 1)(s + a)

a→0
⇒

2s

(s + 1)s
=

2

s + 1
. (21)

In Figure 5 it is possible to see the magnitude and phase

Bode diagrams for different complementary sensitivities,

with a = 1, solid line, a = 0.1, dash-dotted line and

a = 0.01 dashed line. The less we are willing to increase

the SNR requirement the smaller the frequency range in

which disturbances will be successfully rejected (|T | ≈ 1).

From the example just presented, we have confirmation of

[12] in which it is shown that the extra cost in terms of SNR

required for integral action can be made arbitrarily small.

Nonetheless the fact that the required SNR can be made

arbitrarily small it is not of much practical use to us, since

the associated bandwidth in which disturbance rejection is

taking place also tends to zero. Another approach is to com-

bine disturbance rejection with a bandwidth requirement by

which it will have a real impact on the required SNR. To

quantify this SNR calls for an upper bound, Smax, in the

sensitivity function to model the given bandwidth in which

disturbance rejection, in terms of sensitivity reduction, is

almost guaranteed.

The next theorem creates a lower bound for (11).

Theorem 4: Assume that the performance requirement

of sensitivity reduction over a non trivial bandwidth is

defined by a function Smax, and that for any Sper we

have |Sper| ≤ |Smax|. Assume also that the complementary

sensitivities in both cases are strictly proper, and therefore at

high frequencies both magnitudes, |Smax| and |Sper|, will

tend to one. Given the above the following holds true

∥

∥

∥

(

Sper − Ŝ
)

F̃−1H
∥

∥

∥

2

H2

≥

1

2π

∫ ∞

−∞

[

(

|Smax (jω)| −
∣

∣

∣
Ŝ (jω)

∣

∣

∣

)2

∣

∣

∣F̃−1 (jω) H (jω)
∣

∣

∣

2
]

dω. (22)

Proof: Take the extra term as defined in (11)

∥

∥

∥

(

Sper − Ŝ
)

F̃−1H
∥

∥

∥

2

H2

≥

1

2π

∫ ∞

−∞

∣

∣

∣
Sper (jω) − Ŝ (jω)

∣

∣

∣

2 ∣

∣

∣
F̃−1 (jω) H (jω)

∣

∣

∣

2

dω ≥

1

2π

∫ ∞

−∞

(

|Sper (jω)| −
∣

∣

∣Ŝ (jω)
∣

∣

∣

)2 ∣

∣

∣F̃−1 (jω) H (jω)
∣

∣

∣

2

dω

(23)

From the condition of |Sper| ≤ |Smax| we have

|Smax| ≥ |Sper| ⇒
(

|Smax| −
∣

∣

∣
Ŝ

∣

∣

∣

)2

≤
(

|Sper| −
∣

∣

∣
Ŝ

∣

∣

∣

)2

.

(24)

Replacing this inequality in (23) we obtain (22). Note

that the strictly proper condition for the complementary

sensitivities is needed to guarantee the convergence of (22).

In order to investigate how tight this lower bound result is,

an example is investigated.

Example 5: For this example consider a plant with m
distinct unstable poles, with no zeros in the RHS nor time

delay. The communication channel is AWGN (i.e. F = F̃ =
1 and H = 1). The sensitivity function obtained by the

related minimum energy problem is given by

Ŝ(s) = Bp(s) =

m
∏

i=1

s − pi

s + p̄i

. (25)

Take also in account the case of a performance requirement

defined through |Smax| as

|Smax| =







ω/ωo 0 ≤ ω ≤ ωo,

1 ωo < ω.
(26)

By this choice, the lower bound in (22) can be obtained as

∥

∥

∥
Sper − Ŝ

∥

∥

∥

2

H2

≥
ωo

3π
. (27)
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To investigate how tight this bound is take the case of a

choice of Sper as

Sper =
s

s + ωo

Bp(s). (28)

The magnitude of this selection for Sper is given by

|Sper| =
ω

√

ω2 + ω2
o

≤ min

{

1,
ω

ωo

}

. (29)

Since the magnitude of Sper is below the magnitude of

Smax, the bound is valid, but in this case we can also obtain

the exact value of

∥

∥

∥
Sper − Ŝ

∥

∥

∥

2

H2

∥

∥

∥
Sper − Ŝ

∥

∥

∥

2

H2

=
1

2π

∫ ∞

−∞

∣

∣

∣
Sper − Ŝ

∣

∣

∣

2

dω =
ωo

2
. (30)

The result in (30) tells us that for the present choice of Sper

the bound is off on a 78% on the real extra value, but if we

compare it to

1

2π

∫ ∞

−∞

(

|Sper| −
∣

∣

∣
Ŝ

∣

∣

∣

)2

dω = 0.1366ωo, (31)

the proposed lower bound differs by 22%. This suggests that

for this choice of Sper and Smax, the first approximation of
∣

∣

∣Sper − Ŝ
∣

∣

∣

2

by
(

|Sper| −
∣

∣

∣Ŝ
∣

∣

∣

)2

is weakest, whilst the sec-

ond approximation performed by replacing
(

|Sper| −
∣

∣

∣
Ŝ

∣

∣

∣

)2

by
(

|Smax| −
∣

∣

∣
Ŝ

∣

∣

∣

)2

is less coarse. Nonetheless the lower

bound obtained through |Smax| is a more general result

since it concludes that for any choice of Sper that satis-

fies the conditions exposed in Theorem 4, the extra SNR

requirement will be at least of an amount equal to ωo/3π.

Finally a second choice of |Smax| has also been investi-

gated

|Smax| =







ε 0 ≤ ω ≤ ωo,

1 ωo < ω.
(32)

The resulting lower bound for this selection is given by
(1−ε)2

π
ωo.

IV. CONCLUSION AND REMARKS.

In the present paper we have presented the analytical

expression for the output feedback sensitivity function

achieved when the minimal SNR constraint is imposed. The

minimal SNR constraint is such that it is necessary for

stabilisability of the closed loop over an ACGN commu-

nication channel with bandwidth limitation. The definition

of specific control design objectives by means of a target

sensitivity function is one useful approach by which the

increase in the required SNR (to both account for stabil-

isability and performance) can be quantified. This result

proves to be motivation for the study of the sensitivity

reduction as a design requirement. The design requirement

is stated by defining frequency bounds on the sensitivity

function magnitude. The result of this approach are none

tight SNR lower bounds that satisfy the proposed sensitivity

reduction.
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